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ANALYSIS OF THE DISSOLUTION OF A POLYDISPERSE

SYSTEM OF PARTICLES HAVING THE SHAPE OF A PARALLELEPIPED

UDC 539.21:66.061.1A. I. Moshinskii

A mathematical model based on a crystal size distribution function is proposed for the continuous
dissolution of particles having the shape of a parallelepiped. An evolution equation for the undersatu-
ration of the solution is derived. Results of calculations using this equation are presented. A stability
analysis of the steady-state solution obtained is carried out.

Introduction. In mathematical description of a number of processes involved in the growth (dissolution)
of particles, drops, bubbles, etc., models using particle size distribution functions (PSDF) [1–4] have been widely
employed. Such models are sufficiently accurate for practice and are used to determine the size distribution of
disperse systems. More detailed and rigorous methods of the mechanics of multiphase systems [5–7] require more
complex calculations, and because of inaccuracies and difficulties in closing the basic equations, they offer no
advantages over the approach in which PSDF are used.

As a rule, the shape of solid particles in a solution is far from spherical. Nevertheless, the number of papers
devoted to investigation of the mass growth of nonspherical inclusions in a carrier medium is very insignificant (see,
for example, [8–10]). These papers study the mass growth of a polydisperse system of solid particles in a solution.
In addition, of interest is the mass dissolution of particles that have a more complex shape than a sphere and whose
geometry is described using several parameters. We are not aware of papers on this topic. In the present study, we
analyze the dissolution of a polydisperse system of particles in the shape of a parallelepiped. This particle shape is
frequently encountered in nature and engineering and, apparently, it ranks next to a sphere in simplicity.

1. Formulation of the Problem. Let intense mixing occur in the system. In this case, we can assume
that the properties of the two-phase system do not depend on spatial coordinates and use the kinetic law of particle
dissolution, which is known to hold for large Reynolds numbers [11]. In the kinetic regime, the dissolution of
crystal faces does not depend on particle geometry (dimensions) and is only determined by the undersaturation of
the solution C − C∗ (C < C∗). Here C is the concentration of the target component in the solution and C∗ is
the equilibrium concentration at a specified constant temperature. Thus, we consider isothermal dissolution. The
dependence of the rate of change in particle size on the undersaturation is typically linear [11], and in the problem
at hand, it has the form

dx

dt
= U(C − C∗), dy

dt
= V (C − C∗), dz

dt
= W (C − C∗). (1.1)

Here t is time, U , V , and W are known positive constants that depend on the hydrodynamic environment in the
neighborhood of the particle and physicochemical characteristics (density, viscosity, etc.) of the medium [11]. The
shape of the crystal (parallelepiped) is described by three coordinates: length x, width y, and height z. Since the
opposite faces of the parallelepiped grow equally, the values of U , V , and W in Eq. (1.1) correspond to the doubled
velocity of displacement of the corresponding face.

In formulating the main equations of the problem, we ignore fluctuations in the rate of dissolution of the crys-
tals and the effect of aggregation and cleavage of the crystals on the process considered. For the PSDF f(x, y, z, t),
which define the number of particles ∆N in unit volume ∆x∆y∆z [i.e., ∆N = f(x, y, z, t)∆x∆y∆z for small values
∆x, ∆y, and ∆z], the material balance equation for the target solid-phase component is written as
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∂f

∂t
+ (C − C∗)Uj

∂f

∂xj
=
f∗(x1, x2, x3)− f(x1, x2, x3, t)

τ
, (1.2)

where τ is the mean time of displacement of particles in the system (apparatus in which dissolution is carried out),
which is equal to the ratio of the volume of the apparatus to the volumetric consumption of the target component
in the crystals, and f∗ is the distribution function at the entrance to the system, which, in practice, can contain
(describe) undissolved particles that are recycled into the apparatus (fraction of recycle crystals). Generally, f∗ can
also depend on time. In the present paper, we assume that f∗ is a function of only the coordinates xj (j = 1, 2, 3),
which describe the crystal shape. For convenience, in some formulas [in particular, (1.2)] we use the notation x1 = x,
x2 = y, x3 = z, U1 = U , U2 = V , and U3 = W and the rule of summation over repeating indices from one to three.

It should be noted that in the particular case of standing systems, where the volumetric expenditure of the
solid phase tends to zero, the parameter τ tends to infinity, and the right side of Eq. (1.2) becomes zero (periodic
process). Such regimes in the problems of this class were considered in [2, 12, 13].

Equation (1.2) is not sufficient for analysis of the dissolution. We also need to consider the balance of the
target substance in the solution, i.e., the evolution equation for the undersaturation

dC

dt
= β(C∗ − C)

(
U

∫
Q

yzf dQ+ V

∫
Q

xzf dQ+W

∫
Q

xyf dQ

)
− æC

τ
. (1.3)

Here the first three (containing integrals) terms on the right side characterize the passage of the substance from
the solid phase into the solution (i.e., dissolution itself), and the last term characterizes the exit of the dissolved

substance from the system. The term (C∗ − C)U
∫
Q

yzf dQ is the product of the area of the face yz, which is

perpendicular to the x axis, and the rate of its displacement U(C∗ − C), i.e., it designates the increase (decrease)
in the volume of a crystal with dimensions x, y, and z in unit time due to change in the coordinate x. After
multiplication by f dQ and integration, the increments in volume of the entire set of crystals are summed up. The
other two integrated terms have the same meaning. All these terms give the increase in volume for the set of crystals
due to the growth (dissolutions) of all (three) pairs of faces.

In (1.3) and below, the triple integral over xj (j = 1, 2, 3) in the limits (0,∞) along each coordinate is
denoted by one integral with the symbol Q at the lower limit. In this case, dQ = dx dy dz is a short form of the
product of the differentials. The dissolved substance can move with a rate different from the rate of displacement of
the crystals. This is taken into account by the constant æ, which is equal to the ratio of consumption of the target
component in the solution to the rate of consumption of the substance in the crystals. In Eq. (1.3), it is assumed
that the liquid entering the system has zero concentration of the target component, although for different schemes
of the process (for example, in the presence of a recycle) the target component in the solution can penetrate into the
system. The parameter β is a shape factor that takes into account the passage of the substance from the crystals
into the solution. For a combination of integrals similar to that given in (1.3), we introduce the notation

S[f(x, y, z)] =
∫
Q

(Uyz + V xz +Wxy)f(x, y, z) dQ. (1.4)

Although after integration over Q, the operator S does not depend on x, y, and z, we denote the variables and
functions by the symbol S, because below we consider cases where the integration variables x, y, are z are combined
with some parameters. In this case, the dependence of the operator S on these parameters is of interest.

Equations (1.2) and (1.3) must be supplemented by the initial conditions

f
∣∣∣
t=0

= f0(x, y, z), C
∣∣∣
t=0

= C0 (C0 < C∗), (1.5)

which describe the size distribution and concentration of the target component at the beginning of the process.
As regards boundary conditions, for nonstationary problems of dissolution, they need not be formulated [14] (in
contrast to similar problems of mass crystallization from solutions). This is due to the fact that in dissolution
problems, the sign of the growth (dissolution) rate is such that the characteristics of Eq. (1.2) arrive at the planes
x = 0, y = 0, z = 0 (generally, a particular characteristic comes to one of these planes). Indeed, characteristics (1.2)
are solutions of system (1.1), and since C < C∗, all coordinates xj decrease. Therefore, the characteristic lines
issue from the region x > 0, y > 0, z > 0, where the initial condition f0 is specified from physical considerations.
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For stationary problems of dissolution, one should employ the condition that the PSDF becomes zero with infinite
increase in the crystal dimensions xj . Actually, the PSDF becomes zero with increase in xj after intersection of a
certain surface in the first quadrant of the coordinate system (x, y, z). This is also valid for the functions f∗ and f0.

The absence of boundary conditions on the planes xj = 0 (j = 1, 2, 3) in dissolution problems introduces
considerable changes to analysis compared to problems of mass crystallization, although in the basic equations,
only the signs of the rates of change in size alter. In particular, dissolution can give rise to auto-oscillations. In
crystallization, auto-oscillations occurs for a rather rapidly increasing function of nucleation rate in the boundary
conditions for the equation of the PSDF [15, 16]. We are not aware of proofs of stability or instability for particular
dissolution models. [Stability of the steady-state solution of model (1.2), (1.3) is proved below.] In the present
paper, the mass dissolution is analyzed on the basis of the PSDF. Different methods of analysis are proposed in e.g.,
[11, 17]. Because of the absence of boundary conditions on the planes xj = 0 (j = 1, 2, 3), the dissolution problem
cannot be analyzed by immediately using the moment approach [1, 18], which is employed in analysis of the kinetic
regime of particle growth.

2. Steady-State Solution. In the steady-state regime in Eqs. (1.2) and (1.3), the derivatives with respect
to time must be rejected. As an additional condition for the steady-state system (1.2), (1.3), we require that the
PSDF tend to zero as r = (x2 + y2 + z2)1/2 →∞. The parameters of the steady-state solution are denoted by the
subscript s. The condition C = Cs simplifies integration of Eq. (1.2). The integral of the steady-state equation (1.2)
becomes

fs(x, y, z) =
1

τU∆C

∞∫
x

exp
( x− η
τU∆C

)
f∗

(
η, y +

V

U
(η − x), z +

W

U
(η − x)

)
dη

=

∞∫
0

exp (−µ)f∗(x+ µτU∆C, y + µτV∆C, z + µτW∆C) dµ. (2.1)

Here ∆C = C∗ − Cs.
In (2.1), the unknown quantity ∆C, or more precisely, Cs, is determined using the steady-state equation (1.3),

which in view of (2.1) can be written as

æCs = βτ∆C

∞∫
0

exp (−η) dη S[f∗(x+ ητU∆C, y + ητV∆C, z + ητW∆C)]. (2.2)

Let us show that for physically realizable distributions f∗ and realistic parameters of the problem (in par-
ticular, the parameters æ, β, τ , U , V , and W are positive), Eq. (2.2) has at least one root Cs. The steady-state
value of the concentration Cs varies in the interval Cs ∈ [0, C∗]. It should be noted that for Cs = 0, the right
side of Eq. (2.2) is positive, whereas the left side is equal to zero i.e., the right side is larger than the left side. As
Cs → C∗ (∆C → 0), the right side of Eq. (2.2) is equal to βτ∆CS[f∗(x, y, z)], i.e., it tends to zero because the factor
∆C → 0. The left side of (2.2) æC∗ > 0, i.e., it is larger than the right side. For practically feasible distributions
f∗(x, y, z), the right side of (2.2) is a continuous function Cs. Therefore, by virtue of the Bolzano–Cauchy theorem
[19, p. 168], Eq. (2.2) is valid at a point Cs ∈ (0, C∗). This proves the existence of a steady-state regime. For a
particular specified function f∗(x, y, z), the root Cs is easily found by modern numerical methods.

Figure 1 shows a graphical method of determining the root Cs. We consider the case where a monodisperse
fraction of crystals with dimensions X∗, Y∗, and Z∗ is supplied to the entrance to the system, i.e., f∗(x, y, z) =
N∗δ(x −X∗)δ(y − Y∗)δ(z − Z∗) [δ(z) is the Dirac delta function and N∗ is the number of crystals supplied at the
entrance to the system]. We note that this example is of practical interest. After transformations, Eq. (2.2) reduces
to the form

Gs = g(Gs) = A∆G
(
B2(uy∗z∗ + vx∗z∗ + wx∗y∗)

[
1− exp

(
−B/∆G

)]
− 2B∆G(uvz∗ + vwx∗ + uwy∗)

[
1−

(
1 +B/∆G

)
exp (−B/∆G)

]
+ 6(∆G)2uvw

{
1−

[
1 +B/∆G+ 0.5

(
B/∆G

)2]
exp (−B/∆G)

})
, (2.3)
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Fig. 1. Plot of the solution of Eq. (2.3) for τ = 1, u = 1, v = 1.2,
w = 1.5, A = 0.45, and C∗ = 1: curves 1 and 2 refer to g = Gs and
g(Gs), respectively.

where

A =
βN∗(C∗)2(τU∗)3

æ
, B =

1
τC∗

min
(X∗
U
,
Y∗
V
,
Z∗
W

)
, Gs =

Cs
C∗

, ∆G =
∆C
C∗

= 1−Gs. (2.4)

The parameters U , V , W , X∗, Y∗, and Z∗ are brought to nondimensional form u1 = u = U/U∗, u2 = v = V/U∗,
u3 = w = W/U∗, x∗ = X∗/r∗, y∗ = Y∗/r∗, and z∗ = Z∗/r∗, where the scales of U∗ and r∗ are the values of U , V ,
W , X∗, Y∗, and Z∗ for which the value of the parameter B in (2.4) is minimal. With this choice of scales, one of
the quantities x∗, y∗, and z∗, and, accordingly, one of the quantities u, v, and w are equal to unity. If B takes the
indicated minimum value for several values of the ratios X∗/U , Y∗/V , and Z∗/W , we can use any of these equal
ratios to determine the scales U∗ and r∗. For example, if X∗/U = Y∗/V < Z∗/W , we can choose U∗ = U and
r∗ = X∗ or U∗ = V and r∗ = Y∗.

To perform calculations, it is important to know which of the crystal dimensions (x, y or z) is the first to
disappear during its dissolution, i.e., how the crystal disappears. It is possible that before complete dissolution of
crystals having the shape of a parallelepiped, one of the crystal dimensions is much smaller than the remaining.
In our case, this is allowed for in the scales of U∗ and r∗ (among the ratios X∗/U , Y∗/V , Z∗/W , we choose the
minimum ratio). Since terms of the form X∗/(UC∗) have the dimension of time, the parameter B in (2.4) represents
the nondimensional time during which one of the crystal dimensions becomes zero. For example, if B = X∗/(UC∗),
then U∗ = U and r∗ = X∗ and the coordinate x is the first to vanish. If X∗/U = Y∗/V < Z∗/W , then the
dimensions x and y become zero simultaneously, i.e., at the moment of disappearance, the crystal has an “acicular”
shape with nonzero dimension z. In the most “degenerate” case X∗/U = Y∗/V = Z∗/W , the three dimensions of
the crystal x, y, and z become zero simultaneously with complete dissolution.

The data given in Fig. 1 correspond to the following parameter values: x∗ = 1, y∗ = 1.5, z∗ = 1.8. In this
case, U∗ = 1, r∗ = 1 and B = 1. The curve corresponding to the right side of Eq. (2.3) intersects the vertical axis
at g = 0.936. The value of the root is Gs = 0.643.

3. Proof of the stability of the steady-state solution (2.1). For the mass crystallization process,
which is similar to dissolution, stability studies were performed [15, 16, 18, 20]. We are not aware of similar analyses
for the mass dissolution process.

In constructing the basic “frequency” equation, we shall follow [20], where we analyzed the effect of the
nonisothermal nature of the process on the stability of crystallizer operation. We derive equations for the evolution
of a small deviation from the steady-state solution. The unsteady part of the perturbation of the PSDF and
undersaturation of the solution is assumed to be an exponential function of time with a complex factor p at the
time. This gives an equation whose roots are arranged in the plane (Re p, Im p) so that we can judge the stability
of the system (or instability characteristics). We have

f(x, y, z, t) = fs(x, y, z) + exp (pt)ϕ(x, y, z), C(t) = Cs + exp (pt)c. (3.1)

It is assumed that |ϕ| � fs and |c| � Cs. Substituting expressions (3.1) into (1.2) and (1.3) and linearizing in ϕ

and c, we obtain the relations
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Fig. 2. Contour for determining the number of roots of Eq. (3.4).

pϕ−∆CUj
∂ϕ

∂xj
+ cUj

∂fs
∂xj

+
ϕ

τ
= 0,

(
p+

æ

τ

) c
β
−∆CS[ϕ(x, y, z)] = cS[fs(x, y, z)], (3.2)

where the operator S is determined in (1.4). Integrating the first equation of (3.2) [which is linear in ϕ(x, y, z)]
with the proviso that ϕ→ 0 as x, y, z →∞, we obtain

ϕ =
c

∆C

(
fs(x, y, z)−

∞∫
0

exp (−η)fs(x+ Uχη, y + V χη, z +Wχη) dη

)
, (3.3)

where χ = τ∆C/(1 +pτ). Substituting (3.3) into the second equation of (3.2) and performing transformations with
allowance for c 6= 0, we obtain the following equation for the frequencies of the incipient oscillations:

p+
æ

τ
+ βS[fs(x, y, z)] = −β

∞∫
0

exp
(
− η

χ

)
S
[
Uj

∂fs
∂xj

(x+ Uη, y + V η, z +Wη)
]
dη. (3.4)

To make sure that the system is stable, we need to show that Eq. (3.4) has no roots with positive real
part. For this, we use the Rushe theorem [21, p. 454]. The expression on the left side of (3.4) has a unique root
p = −æ/τ − βS[fs(x, y, z)], which is in the left half-plane of the plane of the complex variable p, i.e., no roots exist
in the right half-plane. Let us show that in the right half-plane, i.e., at Re p > 0, the left side of (3.4) surpasses
the right side in magnitude. This is needed to construct the contour of γ, which allows us to employ the Rushe
theorem. The contour includes a semicircle of radius R drawn from the point p = 0 and the vertical line p = iy,
y ∈ (−R,R), where i is an imaginary unity (Fig. 2). In fact, we establish the absence of solutions of Eq. (3.4) at
Re p > −1/τ (τ > 0), using the rectilinear boundary of the contour, shifted by 1/τ to the left of the line Re p = 0,
i.e., the boundary of the contour is Re (1/χ) = 0 (Fig. 2).

The complex variable p enters into Eq. (3.4) only via the exponent (via the parameter χ) on the right side.
It should be noted that with the substitutions of variables necessary for derivation of (3.4), integration over η by
rotation of the contour in the case of Re p > 0 can always be reduced to the real interval (0,∞). Let us estimate
the right side (3.4) at Re p > −1/τ . We have∣∣∣∣∣

∞∫
0

exp
(
− η

χ

)
S
[
Uj

∂fs
∂xj

(x+ Uη, y + V η, z +Wη)
]
dη

∣∣∣∣∣
6 −

∞∫
0

d

dη
S[fs(x+ Uη, y + V η, z +Wη)] dη = S[fs(x, y, z)]. (3.5)

In the derivation of (3.5), we took into account that the derivative of S[fs(x + Uη, y + V η, z + Wη)] with respect
to η is negative everywhere, which can be seen from the expression
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dS

dη
[fs(x+ Uη, y + V η, z +Wη)] = UjS

[∂fs
∂xj

(x+ Uη, y + V η, z +Wη)
]

= −U2

∞∫
0

∞∫
0

yxfs(Uη, y + V η, z +Wη) dy dz − V 2

∞∫
0

∞∫
0

xzfs(x+ Uη, V η, z +Wη) dx dz

−W 2

∞∫
0

∞∫
0

xyfs(x+ Uη, y + V η,Wη) dx dy − 2
∫
Q

(UV z + VWx+ UWy)fs(x+ Uη, y + V η, z +Wη) dQ < 0.

In deriving this expression, we took into account the conditions U > 0, V > 0, W > 0, and fs > 0, the shape of the
domain of integration, and dependence (1.4).

From (3.5) it follows that the right side of Eq. (3.4) is not larger than the third term of βS[fs(x, y, z)] on
the left side (which is real). (From physical considerations, the parameters æ, β, τ , U , V and W are positive.)
Inequality (3.5) is also satisfied for Re p > 0. In this region,∣∣∣p+

æ

τ
+ βS[fs(x, y, z)]

∣∣∣ > ∣∣∣β ∞∫
0

exp
(
− η

χ

)
S
[
Uj

∂fs
∂xj

(x+ Uη, y + V η, z +Wη)
]
dη
∣∣∣. (3.6)

We assume that the function f∗ is such (for example, continuous) that substitution of fs from (2.1) into (3.4) ensures
that the right side of (3.4) in χ is analytic at Re p > 0. Since the right and left sides (3.4) are analytic inside the
contour γ and are continuous on it and inequality (3.6) is satisfied, the Rushe theorem is applicable [21]. From this
theorem it follows that inside the contour bounded by the line γ and the line segment Re p = 0, which makes the
contour closed, the left side of (3.4) p + æ/τ + βS[fs(x, y, z)] = 0 and the complete equation (3.4) have identical
number of roots. However, for any parameter values, the equation p+ æ/τ + βS[fs(x, y, z)] = 0 has no roots inside
this contour. Hence, neither Eq. (3.4) has roots here. As R → ∞, Eq. (3.4) has no roots in the right half-plane
Re p > 0, i.e., the steady-state solution (2.1) is stable against small perturbations. Using inequality (3.5), it is
possible to show that the real part of the roots of (3.4) is not larger than −1/τ , i.e., there is a particular stability
margin.

4. Unsteady Regime. With the stability of the steady-state solution, the unsteady regime describes the
transition to the steady-state regime. To solve problem (1.2)–(1.5), it is reasonable to introduce variables related
to the characteristics of Eq. (1.2):

dλx
dt

= U(C∗ − C),
dλy
dt

= V (C∗ − C),
dλz
dt

= W (C∗ − C), λx(0) = λy(0) = λz(0) = 0. (4.1)

Formulas (4.1) differ from the equations of characteristics (1.1) for (1.2) only in sign [14] but (4.1) also specifies
initial conditions for the functions λx, λy, and λz. Along the characteristic, Eq. (1.2) can be written as

df

dt
=
f∗(x(t), y(t), z(t))− f(x(t), y(t), z(t), t)

τ
.

The formal solution [C(t), and, hence, λj(t) are considered known functions of time] has the form

f(x, y, z, t) = exp
(
− t

τ

)(
f0(x+ λx(t), y + λy(t), z + λz(t))

+
1
τ

t∫
0

exp
(η
τ

)
f∗(x+ λx(t)− λx(η), y + λy(t)− λy(η), z + λz(t)− λz(η)) dη

)
. (4.2)

The function f in (4.2) satisfies Eq. (1.2) and the initial condition (1.5), which is easily verified by immediate
calculation, using the definition of the functions λx, λy, and λz according to (4.1). Calculating the integrals over Q
in Eq. (1.3), we obtain

dC

dt
= β(C∗ − C) exp

(
− t

τ

)(
S[f0(x+ λx(t), y + λy(t), z + λz(t))]

+
1
τ

t∫
0

exp
(η
τ

)
S[f∗(x+ λx(t)− λx(η), y + λy(t)− λy(η), z + λz(t)− λz(η))] dη

)
− æ

C

τ
, (4.3)

C(0) = C0.
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Equations (4.3) and (4.1) form a closed system of equations for the concentration C(t) and the auxiliary func-
tions λx(t), λy(t), and λz(t). Having solved problem (4.1), (4.3), we can consider the function f in (4.2) determined
because the functions λj(t) (j = 1, 2, 3) needed to calculated it are obtained.

As an example, we solve this problem for the case where a monodisperse fraction of crystals with dimensions
X∗, Y∗, and Z∗ is supplied at the entrance to the system, i.e., f∗(x, y, z) = N∗δ(x−X∗)δ(y−Y∗)δ(z−Z∗). The initial
function f0(x, y, z) is taken equal to zero. The integral of the Dirac delta functions in (4.3) is easy to calculate. As
a result, we obtain a special case of Eq. (4.3) in nondimensional form:

dG

dζ
= æ

[
A(1−G) exp (−ζ)

ζ∫
0

exp (µ) dµ
(
u[ŷ + ωy(µ)− ωy(ζ)][ẑ + ωz(µ)− ωz(ζ)]

+ v[x̂+ ωx(µ)− ωx(ζ)][ẑ + ωz(µ)− ωz(ζ)]

+ w[x̂+ ωx(µ)− ωx(ζ)][ŷ + ωy(µ)− ωy(ζ)]
) 3∏
j=1

H(x̂j + ωj(µ)− ωj(ζ))−G

]
, G

∣∣∣
ζ=0

= G0 =
C0

C∗
; (4.4)

dωj
dζ

= uj(1−G), ωj

∣∣∣
ζ=0

= 0 (j = 1, 2, 3). (4.5)

Here the parameters uj are defined in the formulation of Eqs. (2.3) and (2.4); H(z) is the Heaviside function
[H(z) = 1 at z > 0, H(z) = 0 at z < 0], ζ = t/τ is nondimensional time, G = C/C∗ is the nondimensional
concentration, ωj(ζ) = λj(t)/(τU∗C∗) are nondimensional functions of λj(t) (j = 1, 2, 3), and the parameter A is
defined by to (2.4); x̂j = X∗j/(τU∗C∗).

The occurrence of Heaviside functions in (4.4) is due to the change of nature of the solution at the moment
when a particular fraction of crystals of the system completely dissolved (disappeared), i.e., when the first crystals
with dimensions X∗, Y∗, and Z∗ injected into the apparatus completely dissolved. In this case, integration in (4.4)
is performed from a value µ = µ∗(ζ) (and not from zero) until a particular moment is reached. We note that the
case in point is a particular choice of the functions f∗ and f0. Generally, in the presence of very small crystals in
the system, disappearance of particles can begin immediately after they were placed in the apparatus.

The linear dependence of the dissolution rates (1.1) on the undersaturation simplifies the problem. In this
case, two integrals of system (4.5) can be obtained. Nondimensionalization of the parameters according to (2.3)
and (2.4) implies that a pair of the values Uj and X∗j (j = 1, 2, 3) for which the value of the parameter B in (2.4) is
minimal makes the corresponding nondimensional quantities equal to unity. For definiteness, we assume that u = 1
and x∗ = 1, i.e., U∗ = U and r∗ = X∗ (see Fig. 1). Then, it is reasonable to express the functions ωy(ζ) and ωz(ζ)
in (4.5) in terms of ωx(ζ). We obtain

ωy(ζ) = vω(ζ), ωz(ζ) = wω(ζ), ω(ζ) = ωx(ζ), (4.6)

where the coefficient of the function ωx(ζ) is dropped for brevity. We note that relations (4.6) are valid only in the
general case with satisfaction of (1.1) and not only for the conditions considered. With the use of (4.6), problem
(4.4), (4.5) reduces to the system

dG

dζ
= æ

[
A(1−G) exp (−ζ)

ζ∫
0

exp (µ) dµ
(
u[ŷ + v(ω(µ)− ω(ζ))][ẑ + w(ω(µ)− ω(ζ))]

+ v[B + ω(µ)− ω(ζ)][ẑ + w(ω(µ)− ω(ζ))]

+ w[B + ω(µ)− ω(ζ)][ŷ + v(ω(µ)− ω(ζ))]
)
H(B + ω(µ)− ω(ζ))−G

]
, G(0) = G0; (4.7)

dω

dζ
= 1−G, ω(0) = 0, (4.8)

where B = x̂. In addition, of the three Heaviside functions in (4.4) that “cut off” integration, we retain only the
function that defines the lower limit of integration over µ.
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Generally, problem (4.7), (4.8) is solved numerically. For analytical solution of this problem, it is possible to
employ the iteration method. In this case, the function ω is easily determined from (4.8): ω(ζ) = ∆Gζ. Substitution
of this expression into (4.7) (into the integral term) leads to a sufficiently complex equation (which is typical of the
iteration method) for ζ < ξ = B/∆G [see (2.4)] and a simple equation for ζ > ξ:

dG

dζ
= æ(Gs −G) (ζ > ξ). (4.9)

From calculation results it follows that if Eq. (4.9) is used over the entire range of time, for the initial conditions
(4.7) its solutions

G(ζ) = Gs + (G0 −Gs) exp (−æζ) (4.10)

is closer to the exact solution than the solution obtained by the iteration method, which at ζ < ξ, instead of (4.9)
uses a different equation following from (4.7) and equalities ω(ζ) = ∆Gζ. This is due to the fact that as a first
approximation of the iteration method, we used a steady-state solution that is more realistic for rather large times.
As a result, approximation (4.9) for the complete equation (4.7) in the region ζ < ξ can be exacter than the
approximation of the iterative method in this interval.

Thus expression (4.10) can be used as an approximation of the exact solution and next it can be employed
for approximate representation of the function ω(ζ), using solution (4.8), in the form

ω(ζ) = (1−Gs)ζ − (G0 −Gs)[1− exp (−æζ)]/æ. (4.11)

This, in turn, allows us to obtain an approximate expression for the PSDF. Apparently, formula (4.11) can also be
used for approximate determination of the PSDF (4.2) [taking into account the dependence between λj and ωj and
relation (4.6)] in the general problem of mass dissolution. In the nondimensional variables, this solution has the
form

f(x, y, z, t) = exp (−ζ)
(
f0(x̂+ uω(ζ), ŷ + vω(ζ), ẑ + wω(ζ))

+

ζ∫
0

exp (µ)f∗(x̂+ u[ω(ζ)− ω(µ)], ŷ + v[ω(ζ)− ω(µ)], ẑ + w[ω(ζ)− ω(µ)]) dµ
)
, (4.12)

where for symmetry, we introduce the factor u, which, by virtue of (4.6) is equal to unity. Thus, an approximate
solution of problem (1.2)–(1.5) is given by formulas (4.10)–(4.12) with allowance for (4.6). In this case, to determine
the approximate solution, one need to find the steady-state concentration Gs from equation (2.2). However, it should
be noted that for small times, the solution is affected by the function f0, which was ignored in the derivation of
(4.11).

The calculation results are presented in Fig. 3. It is evident that the approximate values of G(ζ) are in good
agreement with numerical results. The approximate dependence ω(ζ) is not sown in Fig. 3 because for the given
parameters and scales of variables, the numerical and approximate (4.11) solutions practically coincide.

In the construction of the numerical algorithm, the integral term in (4.7) was approximated by the trapezoid
rule, and the derivatives in (4.7) and (4.8) were approximated by the first-order finite differences of dG/dζ =
[G(ζ + h)−G(ζ)]/h and dω/dζ = [ω(ζ + h)− ω(ζ)]/h, where h > 0 is the step of the difference scheme. It should
be noted that the dependence ω(ζ) is rather close to a straight line practically throughout the interval.

5. Rate of Disappearance of Particles. For the mass crystallization process, the most important
characteristic is the rate of nucleation of the new phase, and for dissolution, this is the rate of disappearance
of particles. Let us formulate the equation of change in the number of crystals N , determined by the quantity∫
Q

f(x, y, z) dQ. For this, we integrate Eq. (1.2) over Q. As a result, we obtain

dN

dt
= −I +

N∗ −N
τ

, (5.1)

where N∗ =
∫
Q

f∗(x, y, z) dQ is the number of crystals entering the system. The rate of disappearance of particles I

in (5.1) is defined by the relation
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Fig. 3. Dependences G(ζ) and ω(ζ) for the unsteady solution of Eqs. (4.7), (4.8) for G0 = 0,
æ = 0.95, U∗ = 1, τ = 1, x∗ = 1, y∗ = 1.5, z∗ = 1.8, u = 1, v = 1.2, w = 1.5, A = 0.45, C∗ = 1:
curves 1 and 3 refer to G(ζ) [1 is the numerical solution and 3 is the calculation using formula (4.10)]
and curve 2 refers to 0.1ω(ζ).

I = (C∗ − C)

(
U

∞∫
0

∞∫
0

f(0, y, z, t) dy dz + V

∞∫
0

∞∫
0

f(x, 0, z, t) dx dz +W

∞∫
0

∞∫
0

f(x, y, 0, t) dx dy

)
. (5.2)

For the periodic process (in the basic equations τ → ∞) according to (5.1), this quantity characterizes the rate
of change in the number of particles dN/dt in the system. In this case, (periodic process) we do not consider the
inflow of particles into the system with rate N∗/τ and their outflow with rate N/τ , unlike in the general case. In
this connection, we can consider the efficiency of the dissolution process in this system (apparatus). This quantity
(rate coefficient ν) means the ratio of the rate of disappearance of crystals in the steady-state process to the rate
of their penetration into the system, i.e., according to (2.1),

ν =
τIs
N∗

= 1− Ns
N∗

=
1
N∗

∞∫
0

exp
(
− η

τ∆C

)
dη

(
U

∞∫
0

∞∫
0

f∗(ηU, y + ηV, z + ηW ) dy dz

+ V

∞∫
0

∞∫
0

f∗(x+ ηU, ηV, z + ηW ) dx dz +W

∞∫
0

∞∫
0

f∗(x+ ηU, y + ηV, ηW ) dx dy

)
. (5.3)

For the case considered in the present paper, i.e., inflow of a monodisperse fraction of crystals with dimensions X∗,
Y∗, and Z∗, the function f∗(x, y, z) = N∗δ(x − X∗)δ(y − Y∗)δ(z − Z∗). In this case, from formula (5.3) it follows
that

ν = exp (−B/∆G). (5.4)

For the parameters corresponding to the example in Fig. 1, we have ν ≈ 0.061.
The parameter ν is introduced to determine the fraction of crystals that disappeared.
Expression (5.3) can be simplified. For example, if τU∗∆C � 1, the function f∗ in (5.3) can be expanded in

a Taylor series in powers of η in the neighborhood of the point (x, y, z). Restricting ourselves to the first two terms
of this expansion, we obtain the approximate equality

ν ' τ∆C
N∗

(
U

∞∫
0

∞∫
0

f∗(0, y, z) dy dz + V

∞∫
0

∞∫
0

f∗(x, 0, z) dx dz +W

∞∫
0

∞∫
0

f∗(x, y, 0) dx dy

)
. (5.5)

Formulas (5.3)–(5.5) express the numerical efficiency of dissolution because they determine the fraction of
dissolved particles. We can also introduce the mass (or volumetric) efficiency. For the steady-state process, we
define it as the ratio of the volume of particles that passed into the solution M(f∗) − M(fs) to the volume of
particles that entered the system M(f∗):
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Fig. 4. Results of unsteady solution of equations (4.7) and (4.8): curve 1 refers to the number of
particles N(ζ), curve 2 refers to the rate of disappearance of particles I(ζ), and curve 3 refers to
the total volume of particles M(ζ).

σ = 1−M(fs)/M(f∗).

Here M(f) =
∫
Q

xyzf(x, y, z) dQ is the moment characteristic of the PSDF, which depends on the mean volume of

the crystals. Multiplying the steady-state equation (1.2) by xyz and integrating over these variables (over Q) in
the limits (0,∞), we obtain

τ∆C
∫
Q

(Uyz + V xz +Wxy)fs(x, y, z) dQ = M(f∗)−M(fs).

From this, using the steady-state equation (1.3), we obtain the volumetric rate of dissolution

σ =
τ∆C
M(f∗)

∫
Q

(Uyz + V xz +Wxy)fs(x, y, z) dQ =
æCs

βM(f∗)
.

In the case of the monodisperse function f∗ (see Fig. 1), we have σ = Gs = 0.643. For τU∆C � 1, we obtain a
formula similar to (5.5)

σ ' τ∆C
M(f∗)

[
S[f∗(x, y, z)]− τ∆C

(
U2

∞∫
0

∞∫
0

yzf∗(0, y, z) dy dz + V 2

∞∫
0

∞∫
0

xzf∗(x, 0, z) dx dz

+W 2

∞∫
0

∞∫
0

xyf∗(x, y, 0) dx dy + 2
∫
Q

(UV z + VWx+ UWy)f∗(x, y, z) dQ

)]
,

which contains the characteristics of the function f∗ at the entrance.
The time dependence of the rate of disappearance of crystals constructed using relation (5.2) is shown in

Fig. 4 (curve 2). As might be expected, disappearance of particles begins some time (ζ ' 1.35) after the beginning
of the process. This time corresponds to the complete dissolution of the first crystals that entered the system. In
addition, Fig. 4 shows time dependences of the number of particles N (curve 1) and the total volume of particles M
(curve 3). For ζ ' 1.35, curve 1 has inflection (discontinuity of the derivative). As ζ → ∞, the dependences take
values that correspond to the steady-state solution (Ns ' 0.94, Is ' 0.06, and Ms ' 0.47), which can also be
obtained using (2.1).

Conclusions. The mass dissolution problem (1.2)–(1.5) reduces to system (4.7), (4.8) by using equali-
ties (4.6), which, in turn, follow from the laws of dissolution (1.1). We note that the theory described is easily
extended to a more general case than the law of decrease in crystal dimensions considered in this paper. Some
manipulations and results of this work are valid if the parameters U , V , and W in (1.1) are considered nonlinear
functions C − C∗ that vanish for C = C∗. If these functions are different, relations (4.6) are not valid.
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The proportional growth of crystal faces (4.6) allows one to describe the dissolution of crystals in the shape
of a parallelepiped by the one-parameter model applicable for the mass dissolution of spherical particles. Problem
(1.2)–(1.5) includes this version as a particular case. The function f is written as f = F (x, y, z, t)δ(yU−xV )δ(zU−
xW ). With substitution of this dependence into (1.2), the terms containing derivatives of the δ-functions are
reduced, and the regular part of the function f satisfies the equation

∂ψ

∂t
+ U(C − C∗)∂ψ

∂x
=
ψ∗(x)− ψ(x, t)

τ
, ψ(x, t) = F

(
x, x

V

U
, x

W

U
, t
)
,

where the function ψ∗(x) = F∗(x, x V/U, xW/U) is related to the function f∗. The second equation of the dissolution
model (1.3) can be written as

dC

dt
=
β(C∗ − C)VW

U3

∞∫
0

x2ψ(x, t) dx− æC

τ
.

These equations with the modified initial condition (1.5) for ψ form a model for the dissolution of spherical particles
and describe the dissolution of particles whose dimensions satisfy the ratios x : y : z = U : V : W , i.e., from one
of the quantities x, y, and z, it is easy to determine the remaining. This follows from the initial structure of the
function f and relations (4.6).

System (1.2), (1.3) leads to the law of conservation of material during dissolution. To derive it, we need to
multiply (1.2) by xyz and integrate it over Q. Taking into account (1.3), we obtain the equation

d

dt

(
C + βM(f)

)
=
β(M(f∗)−M(f))− æC

τ
,

which, in particular, leads to the dependence between steady-state values of Cs and M(fs).
In the particular case f∗ ≡ 0, problem (4.1), (4.3) can be reduced to the system of ordinary differential

equations if analytical integration of f0 over Q in (4.3) is possible.
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6. I. N. Dorokhov, V. V. Kafarov, and É. M. Kol’tsova, “Equations of thermohydromechanics for a two-phase

polydisperse medium with phase transitions for a continuous particle size distribution,” Prikl. Mekh. Tekh.
Fiz., No. 1, 103–110 (1978).
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